

SJTU SPEECH LAB 上海交通大學智附派着實族空

ICASSP 2018 paper review

Zhehuai Chen

DYNAMIC FRAME SKIPPING FOR FAST SPEECH RECOGNITION IN RECURRENT NEURAL NETWORK BASED ACOUSTIC MODELS

Inchul Song¹, Junyoung Chung^{2*}, Taesup Kim², Yoshua Bengio^{2†}

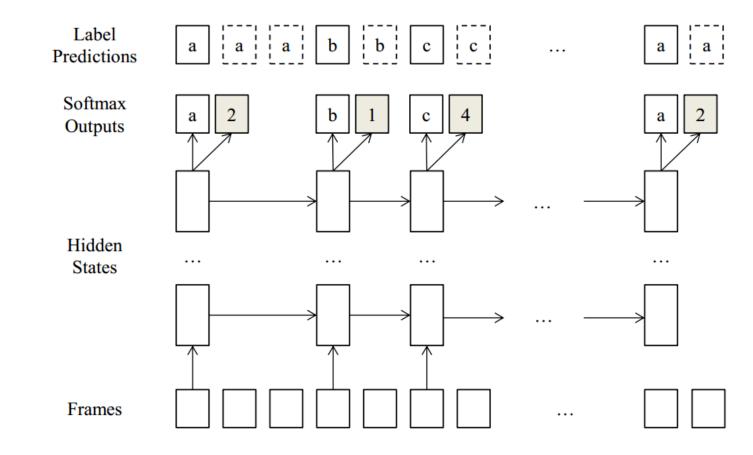
¹Samsung Advanced Institute of Technology, Republic of Korea ²MILA, Université de Montréal, Canada

inchul2.song@samsung.com, {junyoung.chung,taesup.kim,yoshua.bengio}@umontreal.ca

Motivation

Labels			
No skip			
Static			
Dynamic			

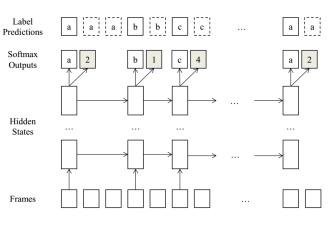
- Motivation
- Framework
 - Using state alignment



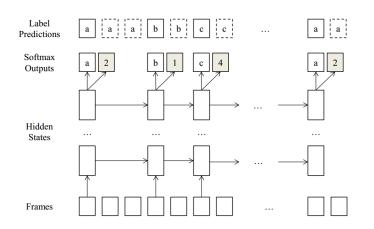
- Motivation
- Framework
- Method
 - Policy gradients (for future decision)

$$J(\theta_s) = \mathbb{E}_{\pi_{\theta_s}} \left[\sum_{i=1}^N \gamma^{i-1} r_i \right]$$
$$r_i = -|s_i^* - s_i|$$

$$egin{aligned}
abla_{ heta_s} J(heta_s) &= \mathbb{E}_{\pi_{ heta_s}} \left[\sum_{i=1}^N
abla_{ heta_s} \log \pi_{ heta_s}(s_i|h_i) R_i
ight] \ R_i &= \sum_{k=i}^N \gamma^{k-i} r_k \end{aligned}$$



- Motivation
- Framework
- Method: Policy gradients
- Result
 - Bad
- TODO
 - Stack feature?
 - Better using alignment? (label delay)
 - Better criteria?
 - Sequence (long temporal) criteria?



SEQUENCE-TO-SEQUENCE ASR OPTIMIZATION VIA REINFORCEMENT LEARNING

Andros Tjandra¹, Sakriani Sakti^{1,2}, Satoshi Nakamura^{1,2}

¹ Graduate School of Information Science, Nara Institute of Science and Technology, Japan ² RIKEN, Center for Advanced Intelligence Project AIP, Japan {andros.tjandra.ai6, ssakti, s-nakamura}@is.naist.jp

Motivation

Sequence level criterion deriving from RL

Method

- Agent: S2S model;
- State: context & hidden state in S2S;
- Action: output label set

$$\pi_{\theta}(a_t|s_t) = P(y_t|h_t^{D(n)}, c_t^{(n)}; \theta) = P(y_t|\mathbf{y}_{< t}, \mathbf{x}^{(n)}; \theta)$$

Reward: WER variants

$$\nabla_{\theta} E_{\mathbf{y}} \left[R^{(n)} | \pi_{\theta} \right] = \nabla_{\theta} \int P(\mathbf{y} | \mathbf{x}^{(n)}; \theta) R^{(n)} d\mathbf{y}$$

- Motivation: sequence level criterion deriving from RL
- Method
 - Agent: S2S model;
 - State: context & hidden state in S2S;
 - Action: output label set
 - Reward: WER variants
 - change to temporal distributed reward

$$\nabla_{\theta} E_{\mathbf{y}} \left[R^{(n)} | \pi_{\theta} \right] = \nabla_{\theta} \int P(\mathbf{y} | \mathbf{x}^{(n)}; \theta) R^{(n)} d\mathbf{y}$$

$$\int \nabla_{\theta} E_{\mathbf{y}} \left[\sum_{t=1}^{T} r_{t}^{(n)} | \pi_{\theta} \right]$$

$$= E_{\mathbf{y}} \left[\sum_{t=1}^{T} r_{t}^{(n)} \sum_{t=1}^{T} \nabla_{\theta} \log P(y_{t} | \mathbf{y}_{< t}, \mathbf{x}^{(n)}; \theta) \right]$$

- Motivation: sequence level criterion deriving from RL
- Method
 - Agent: S2S model;
 - State: context & hidden state in S2S;
 - Action: output label set
 - Reward: WER variants
 - change to temporal distributed reward: whether becomes worse

$$\nabla_{\theta} E_{\mathbf{y}} \left[\sum_{t=1}^{T} r_{t}^{(n)} | \pi_{\theta} \right]$$

= $E_{\mathbf{y}} \left[\sum_{t=1}^{T} r_{t}^{(n)} \sum_{t=1}^{T} \nabla_{\theta} \log P(y_{t} | \mathbf{y}_{< t}, \mathbf{x}^{(n)}; \theta) \right]$
 $r_{t}^{(n)} = -(ED(\mathbf{y}_{1:t}, \mathbf{y}^{(\mathbf{n})}) - ED(\mathbf{y}_{1:t-1}, \mathbf{y}^{(\mathbf{n})}))$

- Motivation: sequence level criterion deriving from RL
- Method
- Comparison with "Minimum Risk Training for Neural Machine Translation"

$$\nabla_{\theta} E_{\mathbf{y}} \left[R^{(n)} | \pi_{\theta} \right] = \nabla_{\theta} \int P(\mathbf{y} | \mathbf{x}^{(n)}; \theta) R^{(n)} d\mathbf{y}$$

$$\mathcal{L}_{\text{werr}}(\mathbf{x}, \mathbf{y}^{*}) = \mathbb{E}[\mathcal{W}(\mathbf{y}, \mathbf{y}^{*})] = \sum_{\mathbf{y}} P(\mathbf{y} | \mathbf{x}) \mathcal{W}(\mathbf{y}, \mathbf{y}^{*})$$

$$= \text{Sampling method}$$

$$= \text{Reward construction} \quad \mathbf{y}_{i} \in \text{Beam}(\mathbf{x}, N)$$

$$\left[\mathcal{W}(\mathbf{y}_{i}, \mathbf{y}^{*}) - \widehat{W} \right]$$

$$r_{t}^{(n)} = -\left(ED(\mathbf{y}_{1:t}, \mathbf{y}^{(n)}) - ED(\mathbf{y}_{1:t-1}, \mathbf{y}^{(n)}) \right)$$

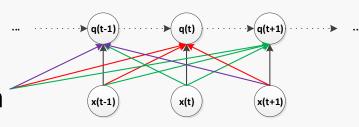
ADVANCING CONNECTIONIST TEMPORAL CLASSIFICATION WITH ATTENTION MODELING

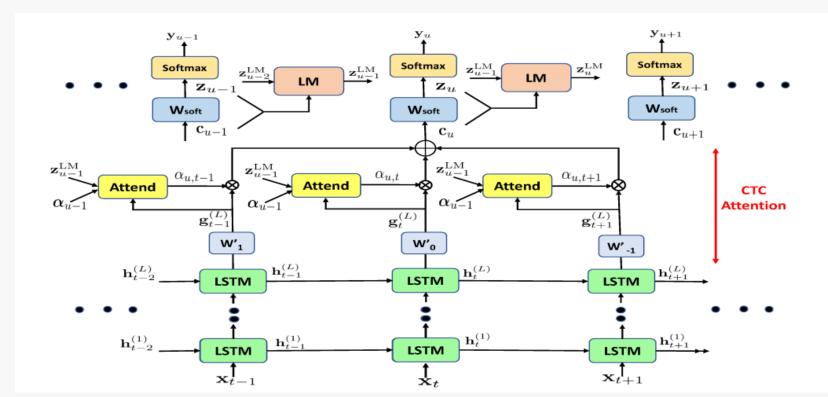
Amit Das*, Jinyu Li, Rui Zhao, Yifan Gong

Microsoft AI and Research, One Microsoft Way, Redmond, WA 98052

Motivation:

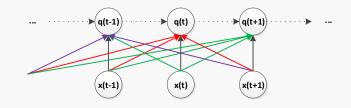
- 1. hard align -> soft align
- 2. change modeling but not criterion



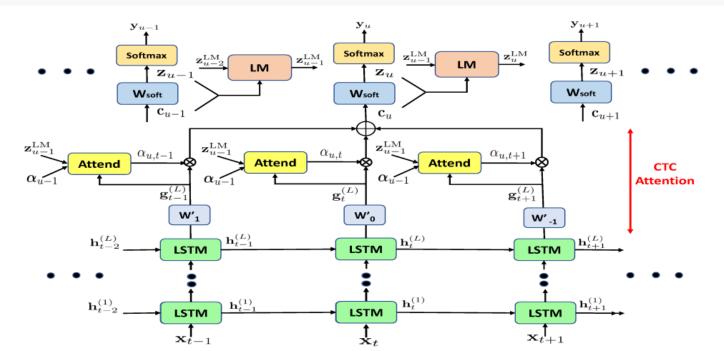


Method

- 1. Chunk based
- 2. time convolution to obtain g_t



- 3. output z_u to replace h_u in obtaining attention weight \alpha
- 4. diff weight \alpha for diff dimension of g_t
- 5. Add language model as a "decoder"



- WER Results
 - Result 1: single letter CTC: 23.29 \rightarrow 18.49
 - Result 2:

E2E Model	Vanilla	WER (Attention
single-letter	17.54	14.30
double-letter	15.37	12.16
triple-letter	13.28	11.36

Result 3:

mixed (OOV: word + triple-letter) CTC	9.32
mixed (OOV: word + triple-letter) attention CTC	8.65

SUPERVISED NOISE REDUCTION FOR MULTICHANNEL KEYWORD SPOTTING

Yiteng (Arden) Huang, Thad Hughes, Turaj Z. Shabestary, Taylor Applebaum

Google Inc., USA

{ardenhuang,thadh,turajs,applebaum}@google.com

- Motivation
 - Baseline
 - per-channel energy normalization (PCEN)
 - 2-channel adaptive noise cancellation (ANC)

$$\mathcal{E}(j\omega,m) \triangleq X_1(j\omega,m) - \mathbf{h}^H(j\omega,m)\mathbf{x}_2(j\omega,m)$$

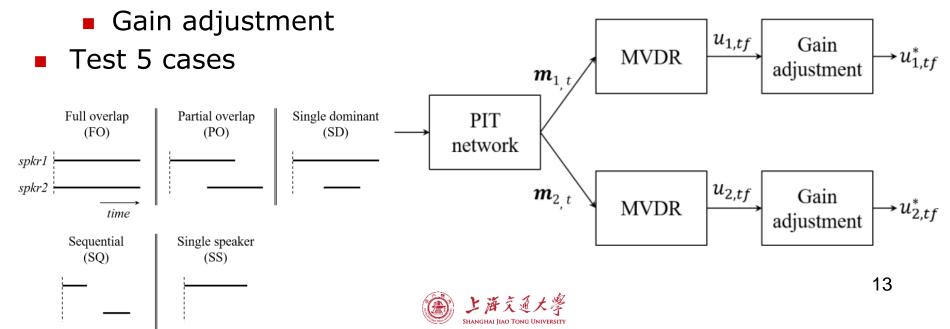
- Decide noise or speech based on 1-pass KWS result
- If speech → ANC succeeds to get clean speech → do not change filter coefficients
- If noise → ANC fails to clean the speech → change coefficients and double check KWS

MULTI-MICROPHONE NEURAL SPEECH SEPARATION FOR FAR-FIELD MULTI-TALKER SPEECH RECOGNITION

Takuya Yoshioka, Hakan Erdogan, Zhuo Chen, Fil Alleva

Microsoft AI and Research, One Microsoft Way, Redmond, WA

- Spectral and spatial inputs:
 - The magnitude spectra
 - Inter-microphone phrase diff (IPD) to the first one
- Mask-driven beamforming outputs (separate ASR)
 - Mask-driven MVDR beamforming



EFFICIENT INTEGRATION OF FIXED BEAMFORMERS AND SPEECH SEPARATION NETWORKS FOR MULTI-CHANNEL FAR-FIELD SPEECH SEPARATION

Zhuo Chen, Takuya Yoshioka, Xiong Xiao, Jinyu Li, Michael L. Seltzer, Yifan Gong

Microsoft AI & Research, One Microsoft Way, Redmond, WA, USA

- Beam prediction
 - the best beam is related to both target and interfering speakers (cannot directly use DOA information)
 - CE between N-hot selection vector and prediction (N spks)

